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Abstract. We present a real space renormalization group (RSRG) method to study the lattice dynamics
of a three component Fibonacci (3CF) quasicrystal. Phonon dispersion relations corresponding to different
models of this lattice are obtained. Some features of the phonon dispersion curves are compared with
experiments on real quasicrystal. It is observed that the positions of the strongest Bragg peaks calculated
analytically are in perfect agreement with our RSRG calculations.

PACS. 71.23.Ft Quasicrystals – 61.44.-n Semi-periodic solids

1 Introduction

The discovery of quasicrystal by Shechtman et al. [1] trig-
gered the extensive theoretical [2–17] as well as experi-
mental [18–20] researches on various physical properties of
semi-periodic [21] systems. Particularly, one-dimensional
quasiperiodic or aperiodic lattices have attracted most of
the attention. The interest in 1D systems really shot up
after the success of Merlin et al. [18] in growing model
systems, where quasiperiodicity or aperiodicity is built
up. Most of these studies are concerned with the elec-
tronic, optical and phonon properties of the substitutional
quasiperiodic or aperiodic structures. The studies of such
self-similar systems are also meaningful from both theoret-
ical and experimental point of views. From experimental
side, it has been possible to construct Fibonacci [18] and
Thue-Morse [19], etc., superlattices by epitaxial growth
method. These artificial superlattices are a new kind of
solids usually grown by depositing very thin (10 nm) lay-
ers of two or more constituent materials (say GaAs-AlAs).
Thus an aperiodicity is introduced by arranging two layers
of materials according to some substitutional sequences
(for example, Fibonacci, Thue-Morse, etc., sequences) in
the z-direction. A lot of various kinds of experiments have
been performed on these superlattices. The varieties of
all these theoretical and experimental studies give some
exotic physical properties [2] like Cantor-set energy spec-
trum, critical wavefunction and scaling behavior of the
integrated density of states, etc., which are completely dif-
ferent from crystalline or amorphous solids.

Besides the studies of the electronic and phonon prop-
erties of these materials, comparatively less works have
been done to study the dynamical response function of

a e-mail: anath@cmp.saha.ernet.in

the quasiperiodic or aperiodic lattices. The main difficulty
to tackle these types of problems, is understandably the
absence of translational invariance. Because of the lack
of translational symmetry, we can not use Bloch theorem
here. Therefore, we are to take help of the other procedures
like trace map [2] technique and real space renormaliza-
tion group (RSRG) method. A large number of theoretical
works have used the trace map technique. Another power-
ful tool is the RSRG method. RSRG technique can be suc-
cessfully used exploiting the self-similar properties of the
quasicrystals to calculate the electronic density of states,
the dynamic response function and the localization length,
etc., of these lattices. We know that the dynamic struc-
ture factor S(q, ω) is a very important physical quantity
because it is directly related to the inelastic neutron scat-
tering cross-section and it also gives the excitation modes
of the system [22,23]. Patel and Sherrington [24] worked
out S(q, ω) for a ferromagnetically coupled spins on a
finite 2D Penrose lattice. Ashraff and Stinchcombe [25]
and Ashraff et al. [26] derived an analytical expression for
S(q, ω) for a 1D Fibonacci chain using generating function
approach. The main results of their derivation are that the
magnon dispersion consists of a main branch along with
many satellite branches of much weaker intensity. There
are well defined propagating modes for small wavevector
separated by a set of gaps from the stripes of the dispersion
less modes at higher frequencies. Using spectral moment
method Benoit et al. [27] rediscovered similar characteris-
tics in a Fibonacci quasilattice. Karmakar et al. [28] devel-
oped a real space renormalization group (RSRG) method
to calculate S(q, ω) for phonon on a Fibonacci chain. Con-
sequently, Ghosh and Karmakar [29] calculated S(q, ω) for
a period doubling lattice.

Most of the theoretical models use the tight-binding
Hamiltonians to calculate the electronic properties of the
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two component quasiperiodic [2,30–33] or aperiodic [34]
lattices. In the literature, there are a few works which
have considered the three component quasilattices [35,36]
as typical examples to investigate their electronic prop-
erties and there are some theoretical as well as experi-
mental works on the study of the static structure factor
of the three component quasiperiodic Fibonacci [20] lat-
tice. But the investigation of the dynamic structure factor
of the three component quasiperiodic lattices, to the best
of our knowledge, has not been attempted so far. There-
fore, the theoretical model for studying the three com-
ponent quasiperiodic systems is worthwhile as we know
that all the thermodynamically stable real quasicrystals
are ternary alloys (AlMnPd, etc.). The experimental X-
ray spectra of the quasicrystal are found to give the bright
Bragg diffraction peaks at the theoretically predicted val-
ues of qmn, where m and n are integers. For example, in
case of the two component Fibonacci lattice the brightest
Bragg peaks are situated at qmn = 2π

D (m+ nτ). D is the
average lattice spacing = (τdA + dB)/τ2, where dA and
dB are respectively the thicknesses of A and B layers ar-
ranged according to a Fibonacci lattice. τ is golden mean
ratio = (1+

√
5)/2. Apart from the static structure factor,

another important physical quantity, which gives the dy-
namical properties of a crystal or quasicrystal is S(q, ω)
because it is directly related to the inelastic differential
scattering cross section. And so the results of our theo-
retical calculation of the dynamic structure factor can be
compared with the experimental findings. Moreover, it is
easy to find the phonon spectrum from the study of the
dynamic structure factor S(q, ω).

In this paper, we have exploited the self-similar prop-
erty of the three component Fibonacci (3CF) quasicrystal
to calculate the static and the dynamic structure factor
by applying the real space renormalization group (RSRG)
method. This method also helps us to find the phonon
dispersion relation and the allowed eigenmodes for this
3CF lattice. The allowed phonon modes can also be found
by solving the trace map equation, first developed by
Kohmoto et al. [2]. The trace map is a polynomial of eigen
modes and in the periodic approximants method [2], the
degree of the polynomial increases as the number of size
of the approximant increases. Therefore, it is difficult to
solve the trace map equation for large system size. And
in the infinite limit, it is practically impossible to solve
the trace map equation. But from the calculation of the
dynamic structure factor, we can easily find the phonon
spectrum. The most important results of this work are
that the phonon spectrum consists of an infinite num-
ber of densely populated gaps and pseudo Brillouin zone
boundaries observed by experiments on real quasicrys-
tals. The dispersion less modes in the optical branch of
the phonon spectrum are another interesting observations
found experimentally by Goldman et al. [37] and Boudard
et al. [38].

The paper has been organized as follows. In Section 2
we describe the lattice and the model. Section 3 briefly
discusses the major point of the real space renormaliza-
tion group (RSRG) technique to calculate the dynamic
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Fig. 1. Portion of an infinite three component Fibonacci (3CF)
chain illustrating the decimation scheme. The original lattice
is split into two equivalent self-similar Ω and Γ sublattices.
The white, dotted and black bars represent A, B and C bonds
respectively.

response function. The results and the discussions are pre-
sented in Section 4. Finally we conclude in Section 5.

2 The lattice and the model

Three component Fibonacci (3CF) lattice [35] can be
obtained by the inflation rules B → C, C → A and
A → AB. It can also be constructed using the stacking
rule Sl+1 = SlSl−2 with S−1 = B, S0 = C and S1 = A.
The total number of elements in any sequence Sl+1 is
Fl+1 = Fl + Fl−2 with F−1 = F0 = F1 = 1. The num-
ber of A in any sequence Sl is Fl−1, that of B is Fl−2 and
the number of C is Fl−3. If NA

l and NB
l be the number

of A and B respectively in any sequence Sl then the ratio
NB
l /N

A
l is Fl−2/Fl−1 = σ (say) in the infinite limit of

l (i.e., l → ∞). Similarly NC
l /N

A
l = σ2 = Fl−3/Fl−1.

Here σ is the only real root of the algebraic equation
σ3+σ−1 = 0. Now according to the inflation rules B → C,
C → A and A→ AB, the first few generations of the three
component Fibonacci sequences are B, C, A, AB, ABC,
ABCA and so on. If we arrange three kinds of atoms ac-
cording to a three component Fibonacci sequence, then
the lattice is known as the three component Fibonacci
lattice. Substitutional matrix corresponding to the trans-
formations A → AB, B → C and C → A can be written
as a 3× 3 matrix with detM= −1 as followsA

′

B
′

C
′

 =

1 1 0
0 0 1
1 0 0

A
B
C

 .

The characteristic roots of the above transformation ma-
trix satisfy the equation y3−y2−1 = 0. The only real root
y is equal to 1.46557 and the other two imaginary roots are
y± = −0.232786±0.792552 I. To implement the real space
renormalization group (RSRG) scheme, we start from a
more general model. We take three types of bonds with
bond lengths dA, dB and dC arranged according to the
three component Fibonacci lattice. Five kinds of masses
mα, mβ, mγ , mδ and mµ are put between the bonds AB,
BC, CA, AA and BA respectively (see Fig. 1) and three
kinds of spring constants kA, kB and kC corresponding
to the A, B and C bonds are taken in our general model
of the three component Fibonacci model. The so-called
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on-site model can be obtained from our general consid-
eration by putting mα = mδ = mA, mβ = mµ = mB,
mγ = mC and kA = kB = kC = k. The transfer model
is obtained by taking mα = mβ = mγ = mδ = mµ = m
and kA 6= kB 6= kC . The mixed model is the combination
of the transfer and on-site models, i.e., mα = mδ = mA,
mβ = mµ = mB, mγ = mC and kA 6= kB 6= kC .

If we take the spring mass model in the harmonic ap-
proximation with nearest neighbor interaction then the
equations of motion look like

(ki,i+1 + ki,i−1 −miω
2)ui = ki,i+1ui+1 + ki,i−1ui−1,

(1)

where ui is the amplitude of eigen modes at the ith lat-
tice site, ω is the phonon angular frequency, ki,i±1 are the
spring constants and mi is the mass of the ith atom in the
lattice. And the single particle Green’s functions Gij(ω)
can be written as

εiGij = −δij + ki,i+1Gi+1j + ki,i−1Gi−1j , (2)

where εi = ki,i+1 + ki,i−1 −miω
2.

Now the dynamic structure factor S(q, ω) is defined as

S(q, ω) = lim
N→∞

lim
δ→0

GN (q, ω − iδ) (3)

where

GN (q, ω) = 1/N
∑
ij

Gij(ω)eiq(ri−rj). (4)

N is the system size and ri is the distance of ith atom
from the origin. It is obvious from equation (4) that for
a periodic lattice with lattice parameter b the expression
for the dynamic structure factor S(q, ω) is

S(q, ω) = Im
[
1/[m(ω − iδ)2 − 2k + 2k cos qb]

]
. (5)

But for a quasiperiodic system there is no translational
symmetry. Therefore, we can not write the expression
for the dynamic structure factor S(q, ω) in a compact
form. But we can exploit the self-similar property of the
quasiperiodic three component Fibonacci lattice and cal-
culate the dynamic structure factor of the lattice. It will
be shown that the calculation of the S(q, ω) essentially
boils down to the iteration of certain recursion relations
and the dynamic structure factor can be calculated with
arbitrary accuracy.

3 RSRG scheme for the determination
of S(q, ω)

Let us now consider the sum Gi(q, ω) =∑
j eiq(ri−rj)Gij(ω) [29]. This sum is independent of

the index i in a periodic system due to translational
invariance. However, in case of a quasiperiodic system, it

depends on the index i, as no two sites are equivalent in
the quasiperiodic lattice and from equation (2) we obtain,

εiG
i(q, ω) = −Fi + ki,i+1e−iq(ri+1−ri)Gi+1(q, ω)

+ ki,i−1eiq(ri−ri−1)Gi−1(q, ω) (6)

where all Fi’s are initially equal to unity. The use of new
notations Fi’s for representing unity does not directly fol-
low from equation (2). We have introduced these notations
by hand and we will see how it facilitates the determina-
tion of S(q, ω) in quasiperiodic lattices. Even though all
Fi’s are initially same, they will become different upon
renormalization. However, from the symmetry of the lat-
tice we observe that there will be only five distinct types
of Fi’s, and we can identify them as Fα, Fβ , Fγ , Fδ and Fµ
corresponding to the α, β, γ, δ and µ sites of the lattice.

It is now necessary to determine all Gi(q, ω)’s from
equation (6) for finding GN (q, ω) and we can write

GN (q, ω) = (1/N)
∑
i

Gi(q, ω). (7)

In the quasiperiodic 3CF chain Gi(q, ω)’s are all dis-
tinct and instead of determining them directly from equa-
tion (6), we use RSRG technique for evaluating Gi(q, ω).
We split the original chain into two self-similar sublattices
Ω and Γ as shown in Figure 1. The Ω-sublattice is ob-
tained by eliminating the sites using the decimation rules
AB → A, C → B and A → C, while the correspond-
ing rules for the Γ -sublattice are BCA → A, BA → B
and BCA → C. Both Γ and Ω sublattices again form
two new 3CF chains at some inflated length scale. All the
sites of the original three component Fibonacci lattice are
distributed among these two sublattices, and thus they
are complementary to each other (see Fig. 1). This com-
plementary nature of Ω and Γ sublattices also ensures
that no information is lost by introducing this splitting
procedure. Now it is possible to generate two sets of renor-
malized equations for Gi(q, ω)’s, one corresponding to Ω-
sublattice while the other for the Γ -sublattice. The equa-
tions for Ω-sublattice can be obtained from equation (6)
by eliminating all Gi(q, ω)’s belonging to Γ -sublattice and
the resulting equations can be cast in the same form as
that of the original set of equations (2), provided we re-
name the sites appropriately and renormalize the param-
eters as follows,

ε
′

α = εβ − k2
B/εα; ε

′

β = εγ ; ε
′

γ = εδ − k2
A/εα

ε
′

δ = εµ − k2
A/εα − k2

B/εα; ε
′

µ = εγ − k2
A/εα

F
′

α = Fβ − FαkBeiqaB/εα; F
′

β = Fγ

F
′

γ = Fδ − FαkAeiqaA/εα

F
′

δ = Fµ − Fα(kAe−iqaA + kBeiqaB )/εα

F
′

µ = Fγ − FαkAe−iqaA/εα

k
′

A = −kAkB/εα; k
′

B = kC ; k
′

C = kA

a
′

A = aA + aB; a
′

B = aC ; a
′

C = aA (8)
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Similarly for the Γ -sublattice the recursion relations can
be written as,

ε
′

α = M − k4
A/(ε

2
αX); ε

′

β = εα − k2
B/M

′ − k2
A/εµ

ε
′

γ = εα − k2
Bεβ − k2

Aεγ − k2
Bk

2
C/(ε

2
βX)− k2

Ak
2
C/(ε

2
γM

′
)

ε
′

δ = WA− k2
Bk

2
C/(ε

2
βX)− k4

A/(εδX)

ε
′

µ = W
′ − k2

Bk
2
C/(ε

2
βX)

F
′

α = N + k2
AY e2iqaA/(εδX)

F
′

β = Fα − kBN
′
e−iqaB/M

′ − FµkAeiqaA/εµ

F
′

γ = Fα − FβkBe−iqaB/εβ − FγkAeiqaA/εγ

+Y kBkCe−iq(aB+aC)/(εβX)

+kAkCN
′
eiq(aA+aC)/(εγM

′
)

F
′

δ = ZA+ kBkCe−iq(aB+aC)/(εβX) + k2
AY e2iqaA/(εδX)

F
′

µ = Z
′
+ Y kBkCe−iq(aB+aC)/(εβX)

k
′

A = −k2
AkBkC/(εβεδX); k

′

B = −kAkB/εµ
k
′

C = kAkBkC/(εγM
′
)

a
′

A = 2aA + aB + aC ; a
′

B = aA + aB

a
′

C = aA + aB + aC , (9)

where

X = εγ − k2
A/εδ − k2

C/εβ

Y = Fγ − kAFδe−iqaA/εδ − kCFβeiqaC/εβ

M = εα − k2
B/εµ − k2

A/εδ

N = Fα − kBFµe−iqaB/εµ − kAFδeiqaA/εδ

M
′

= εβ − k2
C/εγ ; N

′
= Fβ − FγkCe−iqaC/εγ

WA = εα − k2
B/εβ − k2

A/εδ

ZA = Fα − kBFβe−iqaB/εβ − kAFδeiqaA/εδ

W
′

= εα − k2
B/εβ − k2

A/εµ

Z
′

= Fα − kBFβe−iqaB/εβ − kAFµeiqaA/εµ. (10)

Here εi = ki,i+1 + ki,i−1−miω
2, where i refers to α, β, γ,

δ and µ .
Let us represent the above two transformations by

TΩ(Γ ) and denote the renormalized Green’s functions as
GiΩ(Γ ). Now we can recast GN (q, ω) as,

GN (q, ω) = p(Ω)G
(Ω)
N (q, ω) + p(Γ )G

(Γ )
N (q, ω) (11)

where G(λ)
N (q, ω) = (1/Nλ))

∑
i∈(λ)G

i
(λ)(q, ω). Here λ can

be either Ω or Γ , and NΩ(Γ ) is the number of sites in the
Γ (Ω)-sublattice. The coefficient p(Ω) and p(Γ ) denote the
fraction of total sites which belong to Ω and Γ sublattices
respectively, i.e., p(Ω) = NΩ/N and p(Γ ) = NΓ /N . The
expressions for GN (q, ω) and G

(λ)
N (q, ω) are structurally

same, the former being defined in terms of the parameters
of the original 3CF lattice, while the latter refers to those
of the renormalized Γ (Ω)-sublattice. Equation (11) shows

that GN (q, ω) becomes equal to a linear combination of
G

(Ω)
N (q, ω) and G(Γ )

N (q, ω), with coefficients p(Ω) and p(Γ ),
where p(Ω) = σ and p(Γ ) = σ3. Since each of these sublat-
tices again forms a new 3CF chain, we can treat them at
the same footing as the original chain. Thus for the renor-
malizedΩ(Γ ) sublattice,GΩ(Γ )

N takes the same role as that
of GN (q, ω) in the original lattice. As we can split further
each of these new chains into Γ and Ω sub-sublattices, it
is again possible to express both G(Ω)

N (q, ω) and G(Γ )
N (q, ω)

in the form of equation (11). Thus we have,

GN (q, ω) = p(ΩΩ)G
(ΩΩ)
N (q, ω) + p(ΩΓ )G

(ΩΓ )
N (q, ω)

+ p(ΓΩ)G
(ΓΩ)
N (q, ω) + p(ΓΓ )G

(ΓΓ )
N (q, ω). (12)

Here we denote the two branches resulting from Ω-
sublattice as (ΩΩ,ΩΓ ), while those from Γ -sublattice
as (ΓΩ, ΓΓ ). The coefficients can be written as p(µν) =
p(µ)p(ν), with µ, ν = Ω or Γ .

If we continue the splitting procedure, it will give rise
to a tree like structure and it is possible to label each sub-
lattice by its path in this tree. In other words, we label a
sublattice by specifying the sequence of Ω and Γ branches
that constitute the path leading to the sublattice. The idea
of above labeling comes from the fact that this branching
process actually gives a family classification for the sites
of the 3CF chain, and we can consider this tree as the
genealogical tree for this lattice. So finally we can write
GN (q, ω) as,

GN (q, ω) =
∑

all paths

p(path)G
(path)
N (q, ω) (13)

where the sum is over all possible paths in the genealogical
tree for a given number of branching. We terminate each
path in the genealogical tree using the criteria that the
corresponding renormalize coupling constants kA, kB and
kC becomes zero at this stage of iteration. In this limit, the
computation of each term in the equation (13) becomes
trivial (see Eq. (6)) and one can express every G

(path)
N

into the following general form,

G
(path)
N = − (xαF ∗α/ε

∗
α

+xβF ∗β/ε
∗
β + xγF

∗
γ /ε
∗
γ + xδF

∗
δ /ε
∗
δ + xµF

∗
µ/ε
∗
µ

)
(14)

where ε∗i ’s and F ∗i ’s represent the appropriate renormal-
ized parameters and xα, xβ , xγ , xδ and xµ are the concen-
trations of α, β, γ, δ and µ sites in the 3CF chain. Then
GN (q, ω) can be easily evaluated using the above RSRG
scheme and the dynamic structure factor for the quasiperi-
odic 3CF chain can be obtained from equation (3).

The merit of this scheme is that one has to gener-
ate all possible paths in the genealogical tree using a
simple algorithm, then iterate the recursion relations (8)
and (9) sequentially along these paths, and finally deter-
mine GN (q, ω) using equation (13). There is no approx-
imation involved in this method and the dynamic struc-
ture factor for quasiperiodic lattices can be obtained with
arbitrary accuracy, the accuracy level being set by the
smallness of the renormalized values of kA, kB and kC .
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Fig. 2. The dynamic structure factor S(q, ω) for a bond model.
The parameters are same as in Figure 4a.

The dispersion relations for the system can be easily
obtained from S(q, ω) using the fact that the ω and q
values corresponding to every non-zero values of S(q, ω)
constitute a point in the dispersion curve. Thus scanning
the entire ω − q plane for non-zero S(q, ω) one can get
the dispersion curve for the 3CF chain, and the whole
spectrum of normal mode frequencies becomes available.

4 Results and discussions

The 3D plot for the dynamic structure factor S(q, ω) of
3CF lattice as a function of ω and q has been given for
the bond and the on-site models respectively in Figures 2
and 3. The calculation of the dynamic response function
facilitates an easy determination of the phonon dispersion
(ω vs. q) curves. As for examples, we have shown in Fig-
ures 4a–e the phonon dispersion curves for different mod-
els of the three component Fibonacci chain. In Figure 4a
we have plotted ω vs. q by scanning the function S(q, ω)
for non-zero values corresponding to the models character-
ized by the parameters mα = mβ = mγ = mδ = mµ = 1,
kA = kB = kC = 1, dA = 1, dB = σ and dC = σ2, where σ
is the only real root of the algebraic equation σ3+σ−1 = 0.
In Figure 4b the phonon dispersion relation for the trans-
fer model with the parameters mA = mB = mC = 1,
kA = 1, kB = 2, kC = 2.5 and dA = dB = dC = 1 is
shown. The dispersion curve for the mixed model defined
by the parameters mA = 1, mB = 0.5, mC = 2, kA = 1,
kB = 2, kC = 2.5 and dA = dB = dC = 1 is plotted in
Figure 4c. The parameters mA = mB = mC = 1, kA = 1,
kB = 2, kC = 2.5, dA = 1, dB = σ and dC = σ2 are taken
for plotting the phonon dispersion relation in Figure 4d.
Figure 4e shows the phonon dispersion curve for the on-
site model with the parameters mα = mδ = mA = 1,
mβ = mµ = mB = 0.5, mγ = mC = 2, kA = kB = kC = 1
and dA = dB = dC = 1. Figure 5 is a plot of the static
structure factor S(q) vs. q for the three component Fi-
bonacci lattice. Actually the peaks of the static structure
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Fig. 3. The dynamic structure factor for on-site model. The
parameters are same as in Figure 4e.

factor are delta peaks for quasiperiodic lattices. But we
see that there are widths in the static structure factor in
Figure 5. The widths of the static structure factor come
due to the finite value of the imaginary part (δ in Eq. (3))
included in the calculation. If one decreases the value of
the imaginary part (δ) the peaks become sharp and in
the limit δ → 0, it becomes delta peak. We have checked
numerically that the theoretically predicted values of
wavevector qn1,n2,n3(= 2πD−1(n1dA + n2dB + n3dC)) for
the maximum intensity in the static structure factor are
in excellent agreement with our RSRG calculations.

The common features to all these dispersion curves
are that they consist of infinite number of gaps. In each
case the phonon dispersion relation reveals that at very
low and very high q values, i.e., when the wavelength of
the incident radiation is too big or too small compared
to the lattice parameters, the scattering is insensitive to
the quasiperiodic ordering and features similar to a pe-
riodic one are reproduced. For intermediate values of q
the quasiperiodicity comes into play. This is reflected by
the existence of numerous gaps in the phonon spectrum.
We also observe optical modes in the phonon dispersion
curves. The optical modes in the spectrum is the superpo-
sition of an infinite number of curves corresponding to the
very large system size and hence it is very much compli-
cated. Except for the curve of Figure 4a, there are also the
dispersion less optical modes clearly visible in the disper-
sion relations of Figures 4b–e. The origin of the dispersion
less modes can be explained as follows. In case of transfer,
on-site or mixed models, the spring constants kA, kB and
kC become unequal under renormalization procedure. We
have checked numerically that under renormalization, the
spring constant kA becomes very large (i.e., kB/kA � 1)
compared to the other spring constants kB or kC at some
stage of iteration of equations (8) or (9). Therefore, at this
length scale, the whole chain can be thought to be con-
sisting of diatomic molecules with strong coupling kA and
those molecules are connected with very weak coupling
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Fig. 4. Phonon dispersion relations for three
component Fibonacci lattice for: (a) the model
defined by the parameters: mA = mB = mC =
1, kA = kB = kC = 1, dA = 1, dB = σ and dC =
σ2; (b) the transfer model with the parameters:
mA = mB = mC = 1, kA = 1, kB = 2, kC =
2.5, and dA = dB = dC = 1; (c) the mixed
model characterized by the parameters: mA =
1, mB = 0.5, mC = 2, kA = 1, kB = 2, kC = 2.5
and dA = dB = dC = 1; (d) the model with
the parameters: mA = mB = mC = 1, kA = 1,
kB = 2, kC = 2.5, dA = 1, dB = σ and dC = σ2;
and (e) the on-site model with the parameters:
mα = mδ = 1, mβ = mµ = 0.5, mγ = 2, kA =
kB = kC = 1 and dA = dB = dC = 1.

kB or kC . So the vibrations are essentially composed of
diatomic molecules. In such case, it has been shown in
reference [39] that there will be dispersion less modes in
the optical branches, i.e., the optical modes will be flat
with very small spread. This spread is because of the fact
that the ratio kB/kA is not zero and so these molecules
are very weakly coupled, the result is a small spread of the
order of kB/kA in the optical band frequencies as q varies.
In Figure 4a, we have taken equal mass and equal spring
constant (i.e., mi = m for all i and kA = kB = kC = k)
with the different bond lengths dA, dB and dC . In this case
under the iterations of the recursion relations (please see
recursion relations for the spring constants from Eqs. (8)

and (9)) the numerical values of the spring constants will
not differ from one another. Therefore, as the conditions
of either kB/kA � 1 or kC/kA � 1 are not satisfied in
this case, the dispersion less modes are not observed in
Figure 4a.

5 Conclusions

In conclusion, we have presented the results of the dynam-
ical properties of a three component Fibonacci lattice. The
phonon dispersion curves corresponding to different mod-
els of the three component Fibonacci (3CF) chain, give an
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Fig. 5. Static structure factor for the bond lengths dA = 1,
dB = σ and dC = σ2. The maximum of the peaks occur at
qn1,n2,n3 = 2πD−1(n1dA + n2dB + n3dC), where D = dA +
σdB + σ2dC and n1, n2 and n3 are integers.

infinity of gaps. The pseudo-Brillouin zone boundaries are
clearly visible in the phonon spectrum. The dispersion less
modes are observed in case of transfer, on-site and mixed
models because of the fact that one of the spring constants
kA, kB and kC becomes very large compared to the others
and the optical branch [39] becomes flat with very small
spread in band frequencies. Under this condition the whole
lattice can be thought as consisting of molecules with
strong coupling among the constituent atoms, whereas the
molecules among themselves are weakly coupled. Actually
in this length scale, the eigen modes are standing waves
spreading all over the lattice and the theory of propagating
waves are not applicable here. We have also presented the
static structure factor using same formalism. The peaks
of the static structure are found to occur in the theoreti-
cally observed values of the wavevector q. All these gross
features are found to be compatible with the experimental
results on real quasicrystal [37,38].

I thank Bibhas Bhattacharyya and Dhruba Gupta for helping
me with some of the graphics.
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